

Transparent Processing of Neural Networks in Industrial Control

Jiaren Xu a, Chun Dong b, *
School of Electrical Engineering, Beijing Jiaotong University, Beijing 100044, China

a17121515@bjtu.edu.cn, b chdong@bjtu.edu.cn

*Corresponding author

Keywords: DRL, Linear interpolation, Control.

Abstract: This paper introduces a method that can approximate the neural network as a
variable-gain linear feedback controller, which enables the neural network to achieve parameter
transparency and parameter interpretability in the application phase. The approximation method is
independent of the structure of the neural network, and the learning process is completely consistent
with the deep reinforcement learning. Only the learned neural network is approximated in multiple
intervals, and the number and range of approximate intervals can be arbitrarily selected.

1. Introduction
The linear feedback controller is a commonly used control method in industrial control because it

has the advantages of less parameters and transparency of the control process. However, in some
more complicated systems, in order to improve the control effect of the controller, a variable gain
linear feedback controller is usually used. It inherits the advantage of linear feedback control process
transparency, but due to the increase of parameters, the adjustment process becomes more difficult.

Although deep reinforcement learning also performs well in the field of automatic control, one of
the biggest obstacles to applying neural networks to industrial systems is its black box properties.
This means that it is difficult for engineers to interpret the relationship between input characteristics
and their inputs, which makes it impossible for engineers to know if a neural network is vulnerable.
Even during the experiment, some loopholes in the neural network were discovered. At present, there
are no effective repair methods. Only by learning more data in the neural network, it is not
necessarily effective. Therefore, in the industrial control system, the transparency and interpretability
of the model is very important. Only the model can explain the engineers to effectively carry out the
vulnerability investigation to ensure the security of the model.

In fact, opacity and uninterpretation are generated by neural networks, so we tried to use linear
models instead of neural networks, and then combined with reinforcement learning to learn
parameters. This depends on the advantages of both parameter transparency and interpretability, as
well as the advantages of automatic tuning. But in Chapter 3 we can see that after replacing the
neural network with a linear model, the learning speed will become very slow and even impossible
to learn the desired effect. In the method proposed in this paper, we still use neural network
combined with reinforcement learning to learn. But after the learning is completed, we use the
integral gradient method to extract multiple feedback matrices in the neural network, and then use
linear interpolation to integrate the matrices to obtain a transparent and interpretable model (such as
figure 1). Since the matrix used in the linear interpolation process corresponds to the feedback matrix,
the meaning of the parameters of this method is very clear, so we can also make artificial
improvements to the parameters.

2019 3rd International Conference on Computer Engineering, Information Science and Internet Technology (CII 2019)

Published by CSP © 2019 the Authors 336336

Figure 1. 1) DRL. 2) Our methods.

2. Deep Reinforcement Learning
Reinforcement learning is an area of machine learning that emphasizes how agents act on the

environment to maximize the expected return. At time t, there is state st,and the agent selects an
action at according to the given policy π(at|st;θ). This action is fed back to the environment in
which the agent is located, according to the transition probability p(st+1|st, at) of the environment
gets a new state st+1, and the agent gets the reward r(st, at), after which the process continues.
Define Rt to represent the cumulative return from t to infinity and γ as the discount factor:
Rt = ∑ γt'-tr(st' , at')∞

t'=t , where γ ∈ (0,1). The goal of reinforcement learning is to maximize the
expected return J(θ) = Eπθ[Rt] with θ as the strategic parameter of the agent. In deep learning, the
agent's policy π(at|st;θ) is a neural network. In this chapter, we introduce a parameter
optimization method based on the policy gradient method.

2.1 Policy Gradient.

Since the agent's policy π(at|st;θ) is about the parameter θ, it can optimize the parameters by
the gradient rise method on the expected return J(θ). According to the REINFORCE algorithm
(Williams, 1992), the gradient of J(θ) with respect to θ is given by:

∇𝜃𝜃𝐽𝐽(𝜃𝜃) = 𝔼𝔼𝜋𝜋[∑ ∇𝜃𝜃 log𝜋𝜋𝜃𝜃(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) 𝛾𝛾𝑡𝑡𝑅𝑅𝑡𝑡∞
𝑡𝑡=0] = 𝔼𝔼𝜋𝜋[∑ ∇𝜃𝜃 log𝜋𝜋𝜃𝜃(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) 𝛾𝛾𝑡𝑡(𝑅𝑅𝑡𝑡 − 𝑏𝑏(𝑠𝑠𝑡𝑡))∞

𝑡𝑡=0] (1)
Where b(st) is the baseline. Let ρπ(s) = ∑ γtp(st = s)∞

t=0 , (1) can be rewritten as:
∇𝜃𝜃𝐽𝐽(𝜃𝜃) = 𝔼𝔼𝑠𝑠𝑡𝑡~𝜌𝜌𝜋𝜋(∙),𝑎𝑎𝑡𝑡~𝜋𝜋(∙|𝑠𝑠𝑡𝑡)[∇𝜃𝜃 log𝜋𝜋𝜃𝜃(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡) (𝑅𝑅𝑡𝑡 − 𝑏𝑏(𝑠𝑠𝑡𝑡))] (2)

However, in this method, the update of the gradient takes a long time to affect the state to which
the small value is given, and empirically, a poor learning effect is produced. Therefore, in most of
the policy gradient methods, the non-discount state distribution is used instead, that is, γ=1 in the
equation ρπ(s). The replacement update method is equivalent to maximizing the average return of
the strategy, even if Rt is the accumulated discount reward.

The expected calculation is to use Monte Carlo sampling for estimation. In most cases, the state
value function Vπ(st) is used as the baseline, and Qπ(st, at) is used instead of Rt , so that
Rt-b(st) can be replaced by Aπ(st, at), which is defined as follows:

𝑉𝑉𝜋𝜋(𝑠𝑠𝑡𝑡) = 𝔼𝔼𝜋𝜋[𝑅𝑅𝑡𝑡] = 𝔼𝔼𝜋𝜋𝜃𝜃(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡)[𝑄𝑄𝜋𝜋(𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡)] (3)

DATA 𝑥𝑥1

𝑎𝑎1

𝑥𝑥2

𝑎𝑎2

f

f f

𝑥𝑥3

f

𝑎𝑎3

f

𝐾𝐾1,𝐾𝐾2,⋯ ,𝐾𝐾𝑛𝑛
𝑔𝑔(𝐾𝐾1,𝐾𝐾2,⋯ ,𝐾𝐾𝑛𝑛)

𝑥𝑥

𝑎𝑎

1)
DRL

2)
O

ur m
ethods

Training Application

Extraction Application

337337

𝑄𝑄𝜋𝜋(𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡) = 𝑟𝑟(𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡) + 𝛾𝛾𝔼𝔼𝜋𝜋[𝑅𝑅𝑡𝑡+1] = 𝑟𝑟(𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡) + 𝛾𝛾𝔼𝔼𝑝𝑝(𝑠𝑠𝑡𝑡+1|𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡)[𝑉𝑉𝜋𝜋(𝑠𝑠𝑡𝑡+1)] (4)
𝐴𝐴𝜋𝜋(𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡) = 𝑄𝑄𝜋𝜋(𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡) − 𝑉𝑉𝜋𝜋(𝑠𝑠𝑡𝑡) (5)

In fact, there are many improvements in the policy gradient method. In this paper, we use an
improved method proposed by PPO (2017, OpenAI) [7]. The improved gradient is:

∇𝜃𝜃𝐽𝐽(𝜃𝜃) = 𝔼𝔼𝜋𝜋𝜃𝜃𝑜𝑜𝑜𝑜𝑜𝑜[∇𝜃𝜃min (𝑟𝑟𝑡𝑡(𝜃𝜃)𝐴𝐴𝜋𝜋(𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡), 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑟𝑟𝑡𝑡(𝜃𝜃), 1 − 𝜖𝜖, 1 + 𝜖𝜖)𝐴𝐴𝜋𝜋(𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡))] (6)

Where rt(θ) = πθ(at|st)
πθold(at|st)

, ϵ ∈ (0,1).

Aπ(st, at) is estimated using A�t = δt + (γλ)δt+1 + ⋯+ (γλ)T-t+1δT-1, where T is the terminal
time, λ ∈ (0,1). And δt = r(st, at)+ γVw(st+1)-Vw(st), where Vw(st) is an estimate of Vπθold(st).
In most cases Vw(st) is a neural network whose parameters are updated using the gradient descent
method. The gradient formula is as follows:

∇𝑤𝑤(𝑉𝑉𝑤𝑤(𝑠𝑠𝑡𝑡) − ∑ 𝛾𝛾𝑡𝑡′−𝑡𝑡𝑟𝑟(𝑠𝑠𝑡𝑡′ ,𝑎𝑎𝑡𝑡′)
∞
𝑡𝑡′=𝑡𝑡)2 (7)

3. Methods and Simulation
On the first-order pendulum and the second-order pendulum, we use the neural network as the

policy and the linear model as the policy. Figure 2 shows the learning effect of the first-order
pendulum of the neural network and the second-order pendulum. Figure 3 is the first-order pendulum
of the linear model, and the learning effect diagram on the second-order pendulum. The horizontal
axis represents the number of actions of the agent, and the vertical axis represents the round score of
the agent. The higher the score, the better the control effect. As can be seen from Figure 2 and Figure
3, if the neural network is directly replaced by a linear model, it will take more time to learn, and
even cannot learn a policy to make the system stable. In order to maintain the efficiency of the
process and to achieve interpretability, our method is to use the neural network in the learning
process. After the neural network has been learned, the characteristics of the neural network
(corresponding to the feedback matrix in the control system) are extracted. Linear interpolation is
performed to obtain a linear feedback model with variable gain. Since the coefficients in the matrix
have a clear physical meaning, we can combine the engineering experience to make some small
manual adjustments to the feedback matrix extracted by the neural network.

(a) (b)

Figure 2. a) 1st-order with NN. b) 1st-order with linear.

338338

(a) (b)

Figure 3. a) 2nd-order with NN. b) 2nd-order with linear.

3.1 Feature Extraction
In this paper we use a method called integral gradient (Mukund, 2017) [10] for feature extraction,

the formula is as follows:
𝑓𝑓(𝑠𝑠) = ∫ ∇𝑠𝑠𝑓𝑓(𝑠𝑠)|𝑠𝑠=𝑠𝑠0+𝑡𝑡(𝑠𝑠−𝑠𝑠0) ∙ (𝑠𝑠 − 𝑠𝑠0)1

0 d𝑡𝑡 + 𝑓𝑓(𝑠𝑠0) (8)

𝑓𝑓(𝑠𝑠) ≈ 1
𝑚𝑚
∑ ∇𝑠𝑠𝑓𝑓(𝑠𝑠)|𝑠𝑠=𝑠𝑠0+𝑘𝑘

𝑚𝑚(𝑠𝑠−𝑠𝑠0) ∙ (𝑠𝑠 − 𝑠𝑠0)𝑚𝑚
𝑘𝑘=1 + 𝑓𝑓(𝑠𝑠0) (9)

This method was first proposed to analyze the extent to which each pixel of the input image
affects neural network prediction. It can be seen that the above equation has the structure of
f(s) = -K(s)(s0-s) + b, where K(s) = ∫ ∇sf(s)|s=s0+t(s-s0)

1
0 dt, b = f(s0).

It is worth noting that as long as s0 is within the definition domain, the equation f(s) = K(s)s +
b holds. In all of the following, we assume that s = s0 is the equilibrium point, let e = s0-s, and
get f(s) = -K(s)e + b.

From the above formula, we can construct f1(s) and f2(s) as approximation functions of f(s) in
the vicinity of s = s1 and s = s2, as follows:

𝑓𝑓1(𝑠𝑠) = −𝐾𝐾(𝑠𝑠1)𝑒𝑒 + 𝑏𝑏 (10)
𝑓𝑓2(𝑠𝑠) = −𝐾𝐾(𝑠𝑠2)𝑒𝑒 + 𝑏𝑏 (11)

Regardless of the point at which the approximation is made, K(s1) and K(s2) represent the
degree of influence of the function on the variation of the error e, ie the feedback matrix of the
system. In engineering, we can easily determine how the controller is controlled by the feedback
matrix, because each coefficient in the feedback matrix corresponds to the weight of the controller's
change to this state. The feedback matrix can be approximated by K(s) ≈ 1

m
∑ ∇sf(s)|s=s0+k

m(s-s0)
m
k=1 ,

where The larger the m, the higher the degree of approximation.
In order to get a better approximation, we will approximate in multiple intervals. However, the

approximated function is discontinuous. This discontinuity may cause jitter in the system during
control. In this paper, we will use linear interpolation methods to eliminate this discontinuity, and
linear interpolation does not add opacity to the approximation process.

3.2 Linear Interpolation
Linear interpolation is a commonly used method for processing the scaling of an image. Unlike

the general interpolation method, we interpolate K(s1), K(s2),⋯ , instead of f(s1), f(s2),⋯.
Assume s = [s1, s2,⋯ , sn]T ∈ Rn×1,and si ∈ [s1i , s2i], s2i ≥ s1i , where i = 1,2,⋯, we have:

𝐾𝐾�(𝑠𝑠) = ∑ 𝐾𝐾(𝑠𝑠3−𝑗𝑗1
1 , 𝑠𝑠3−𝑗𝑗2

2 ,⋯ , 𝑠𝑠3−𝑗𝑗𝑛𝑛
𝑛𝑛)∏

(𝑠𝑠𝑖𝑖−𝑠𝑠𝑗𝑗𝑖𝑖
𝑖𝑖)(3−2𝑗𝑗𝑖𝑖)

𝑠𝑠2𝑖𝑖−𝑠𝑠1𝑖𝑖
𝑛𝑛
𝑖𝑖=1

2
𝑗𝑗1=1,𝑗𝑗2=1,⋯,𝑗𝑗𝑛𝑛=1 (12)

339339

𝑏𝑏 = 𝑓𝑓(𝑠𝑠0) (13)
𝑓𝑓(𝑠𝑠) = 𝐾𝐾�(𝑠𝑠)𝑠𝑠 + 𝑏𝑏 (14)

 f̃(s) is an estimate of f(s). In the application, we need to divide several intervals in each
dimension of the state s in advance, that is, several groups s2i , s1i . When calculating K�(s), the closest
s2i , s1i from si is used.

Considering the case where the stable point is s = s0, in most stable balanced systems (such as
inverted pendulum), there will be f(s0) = 0, but since f(s) is the result of neural network, f(s0)
does not necessarily equal 0, but we can force b = 0 so that f̃(s0) = 0.
3.3 Simulation

We compare the first- and second-order pendulums with the well-known neural network and the
methods described in this article. A schematic diagram of the first-order pendulum and the
second-order pendulum is shown in Figure 4 In the first-order pendulum, the state variable is
s = [x, θ, ẋ, θ̇]T, the reward rt = 1-xt2-θt

2-0.01ẋt2-0.01θ̇t
2
. The structure of the neural network is:

[4, 256], [256, 2], the feedback matrix and the comparison of control effects are shown in Figures 3.5
and 3.6. The division of the interval is as follows:

x = �-1, -0.5,0, 0.5, 1�, θ = {-16, -8,0,9,16}, ẋ = �-2, -1,0,1,2�, θ̇ = {-36, -18,0,18,36}
In the second-order pendulum, the state variable is s = [x, θ1, θ2, ẋ, θ̇1, θ̇2]T , reward rt =

1-xt2-θ1,t
2-θ2,t

2-0.01ẋt2-0.01θ̇1,t
2

-0.01θ̇2,t
2
. The structure of the neural network is: [6, 256], [256,

128], [128, 2], the feedback matrix and the comparison of control effects are shown in Figures 3.7
and 3.8. The division of the interval is as follows:

𝑥𝑥 = {0},𝜃𝜃1 = {−20,−16,−12,−8,−4,0,4,8,12,16,20},
θ2 = {-30, -24, -18, -12, -6,0,6,12,18,24,30},

ẋ = {0}, θ̇1 = {0},θ̇2 = {0}
In the system of the second-order inverted pendulum, we only interpolate θ1, θ2, which is

designed according to engineering experience. Such an approach can greatly reduce the number of
parameters and the amount of calculation, which is convenient for analysis.

(a) (b)

Figure 4. a) 1st-order pendulum. b) 2nd-order pendulum.
As can be seen from Figure 5 and Figure 7, the feedback matrix obtained by linear interpolation

differs from the feedback matrix extracted directly from the neural network, but the general trend is
the same. As can be seen from Figures 6 and 8, the control effect of the proposed method is
comparable to that of the neural network. When the neural network is stable, it is not guaranteed to
stop at x = 0 (may be achieved by adjusting the parameters of the reward function). In our method,
since we have performed manual tuning, let b = 0, so we can stop at x = 0 when the system is
stable.

𝜃𝜃
𝜃𝜃1

𝑥𝑥 𝑥𝑥

340340

Figure 5. Feedback matrix of 1st-order

In the control data of the same set of first-order inverted pendulum, the feedback matrix K
extracted by the neural network using the integral gradient is compared with the image obtained by
linear interpolation. The red dotted line is the neural network, and the green solid line is the method
of this paper.

Figure 6. State of 1st-order

In the first-order inverted pendulum system, starting with the same initial state, the control effect
of the neural network is compared with the control effect of the method in this paper. The red dotted
line is the neural network, and the green solid line is the method of this paper.

341341

Figure 7. Feedback matrix of 2nd-order

In the control data of the same set of second-order inverted pendulum, the feedback matrix K
extracted by the neural network using the integral gradient is compared with the image obtained by
linear interpolation. The red dotted line is the neural network, and the green solid line is the method
of this paper.

Figure 8. State of 2nd-order

In the second-order inverted pendulum system, starting with the same initial state, the control
effect of the neural network is compared with the control effect of the method in this paper. The red
dotted line is the neural network, and the green solid line is the method of this paper.

342342

4. Experiment
In this chapter, we apply the controller from the method of this article to the real inverted

pendulum. Since the parameters of the modeling are based on the actual inverted pendulum, we
directly control the inverted pendulum directly from the controller obtained from the simulation
environment.

4.1 Hardware
The motor we use is a 42-stepper motor, model 42HZ260-1684D5. The angle sensor used is a

potentiometer, model number WDD35D4-5K. The controller module used is STM32 and the model
number is STM32F407ZG. The overall physical map is shown in Figure 9.

 (a) (b)

Figure 9. a) Front view of the inverted pendulum. b) Side view of the inverted pendulum

4.2 Waveform
Since the potentiometer can only measure the angle, the angular velocity cannot be measured, and

the data measured by the potentiometer has a large noise. So, in actual use, we added a Kalman filter
with the inverted pendulum as a model. The state (x, θ, ẋ, θ̇) input to the controller is the state after
Kalman filtering. The waveform of the state during the control process is shown in Figure 10.

Figure 10. Control waveform.

343343

As can be seen from Figure 10, our controller is able to achieve stable balance control. After a
disturbance to the angle of the inverted pendulum, the controller can return the inverted pendulum
back to the balance point. And as we get in the simulation, we can stop at x=0.

5. Summary
Through the simulation and physical control waveforms of the previous chapters, we can see that

our method can achieve stable balance control. And we have inherited the advantages of deep
reinforcement learning and have the ability to interpret. Our approach allows manual tuning and
parameters have clear physical and engineering implications. The most straightforward example is
that in Chapter 3 we removed the offset so that our controller could stop the inverted pendulum at
x=0, and the neural network corresponding to the method could not stop at x=0. And the control
effect of our method is close to that of the original neural network, which shows that our method has
a higher approximation to the original neural network. More notably, since our method is equivalent
to a piecewise linear controller, we can directly analyze its stability theoretically, and the neural
network directly obtained by using deep reinforcement learning cannot be analyzed. Stability. Of
course, our method requires some manual experience when the dimension is high, mainly in the
division of state. However, this has greatly saved our development time compared to manual tuning
parameters.

References
[1] Volodymyr Mnih, Koray Kavukcuoglu, David Silver. et al. Playing Atari with Deep
Reinforcement Learning. 2013.
[2] Mnih, V., Kavukcuoglu, K., Silver, D. et al. Human-level control through deep reinforcement
learning. Nature 518, 529–533 (2015) doi:10.1038/nature14236.
[3] Silver D, Lever G, Heess N, et al. Deterministic policy gradient algorithms[C]// International
Conference on International Conference on Machine Learning. JMLR.org, 2014.
[4] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel. et al. Continuous control with deep
reinforcement learning. 2015.
[5] Mnih V, Badia, Adrià Puigdomènech, Mirza M, et al. Asynchronous Methods for Deep
Reinforcement Learning [J]. 2016.
[6] Schulman J, Moritz P, Levine S, et al. High-Dimensional Continuous Control Using
Generalized Advantage Estimation[J]. Computer Science, 2015.
[7] Schulman J, Levine S, Moritz P, et al. Trust Region Policy Optimization[J]. 2015.
[8] Schulman, John, Wolski, Filip, Dhariwal, Prafulla. et al. Proximal Policy Optimization
Algorithms [J].
[9] Gu S, Lillicrap T, Ghahramani Z, et al. Q-Prop: Sample-Efficient Policy Gradient with An
Off-Policy Critic[J]. 2016.
[10] Mukund Sundararajan, Ankur Taly, Qiqi Yan. Axiomatic Attribution for Deep Networks.
2017.
[11] Fazel M, Ge R, Kakade S M, et al. Global Convergence of Policy Gradient Methods for the
Linear Quadratic Regulator[J]. 2018.

344344

	1. Introduction
	2. Deep Reinforcement Learning
	3. Methods and Simulation
	4. Experiment
	5. Summary
	References

